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Gastric cancer is the fifth most frequently diagnosed cancer type and the third lead-
ing cause of cancer-related death worldwide (1). In the WHO classification, the most 
common type of gastric cancer is tubular gastric adenocarcinoma (GAC). To ensure 

appropriate and timely treatment, it is of significant importance to correctly identify tumor 
aggressiveness as well as the cancer stage, particularly in the preoperative period.

The most important feature of malignant cells is their ability to produce metastatic de-
posits in remote areas. Vascular structures, lymphatic ducts, and nerves are metastatic inva-
sion pathways for lymphovascular invasion (LVI) and perineural invasion (PNI). These path-
ways are well defined in the literature and have been the focus of a great deal of research 
in tumor biology (2–7). The presence of the LVI and PNI, separately or concurrently, has a 
significant impact on patient prognosis and associated with decreased survival, which may 
help oncologists identify the risk of distant metastasis of the primary tumor and local recur-
rence (3–7). Both the LVI and PNI are also independent prognostic factors for node-negative 
cancer patients (4). In addition, many studies suggested that LVI is associated with lymph 
node metastasis (8). Identification of these features may facilitate achieving higher accuracy 

PURPOSE 
Lymphovascular invasion (LVI) and perineural invasion (PNI) are associated with poor prognosis 
in gastric cancers. In this work, we aimed to investigate the potential role of computed tomogra-
phy (CT) texture analysis in predicting LVI and PNI in patients with tubular gastric adenocarcino-
ma (GAC) using a machine learning (ML) approach.

METHODS
Sixty-eight patients who underwent total gastrectomy with curative (R0) resection and 
D2-lymphadenectomy were included in this retrospective study. Texture features were extracted 
from the portal venous phase CT images. Dimension reduction was first done with a reproduc-
ibility analysis by two radiologists. Then, a feature selection algorithm was used to further reduce 
the high-dimensionality of the radiomic data. Training and test splits were created with 100 ran-
dom samplings. ML-based classifications were done using adaptive boosting, k-nearest neigh-
bors, Naive Bayes, neural network, random forest, stochastic gradient descent, support vector 
machine, and decision tree. Predictive performance of the ML algorithms was mainly evaluated 
using the mean area under the curve (AUC) metric.

RESULTS
Among 271 texture features, 150 features had excellent reproducibility, which were included in 
the further feature selection process. Dimension reduction steps yielded five texture features 
for LVI and five for PNI. Considering all eight ML algorithms, mean AUC and accuracy ranges 
for predicting LVI were 0.777–0.894 and 76%–81.5%, respectively. For predicting PNI, mean AUC 
and accuracy ranges were 0.482–0.754 and 54%–68.2%, respectively. The best performances for 
predicting LVI and PNI were achieved with the random forest and Naive Bayes algorithms, re-
spectively.

CONCLUSION
ML-based CT texture analysis has a potential for predicting LVI and PNI of the tubular GACs. Over-
all, the method was more successful in predicting LVI than PNI. 
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in disease staging and, ultimately, change 
the strategy regarding the use of adjuvant 
therapy for high-risk patients (8–10).

Recently, texture analysis as a radiomic 
approach has been widely used for nonin-
vasive quantitative evaluation of the wide 
variety of neoplasms (11). This method 
simply extracts high-dimensional pixel or 
voxel data from medical images that would 
go unnoticed by the naked eye, which may 
be associated with, for instance, aggressive-
ness, treatment resistance, histopathologic, 
genomic or proteomic characteristics of the 
lesions (12, 13).

Interestingly, there has been no previous 
work regarding the prediction of LVI and 
PNI in GAC using computed tomography 
(CT) texture analysis along with artificial 
intelligence. In this work, we focused on 
the most common histopathologic type 
of GAC, that is tubular, and investigated 
the potential role of CT texture analysis 
in predicting LVI and PNI using a machine 
learning (ML) approach with various state-
of-the-art algorithms.

 
Methods
Study design

The institutional review board of our 
hospital approved this retrospective study 
and waived the requirement for informed 
consent (Approval no: 1976). A total of 468 
patients who underwent gastrectomy for 
GAC were collected from our archive, cov-
ering the period between January 2014 and 
April 2019. 

Our inclusion criteria were as follows: (i), 
histologically confirmed tubular GAC and 
mixed GAC with ≥80% tubular component; 
(ii), surgically proven Siewert type II and III 
esophagogastric junction or gastric can-

cers; (iii), patients who underwent total gas-
trectomy with curative (R0) resection and 
D2-lymphadenectomy; and (iv), patients 
who had undergone preoperative con-
trast-enhanced CT (obtained during portal 
phase with 60 seconds of delay) in our hos-
pital. The exclusion criteria were as follows: 
(i), patients who preoperatively received 
adjuvant or neoadjuvant chemotherapy 
due to clinical stage, locally advanced or 
metastatic disease; (ii) patients with poor 
tumor visualization due to early-stage or 
positive oral contrast medium; (iii) patients 
with no preoperative gastroscopy or oper-
ation in our hospital; and (iv) patients with 
previous distal gastrectomy in preoperative 
period. After applying the inclusion and ex-
clusion criteria, 68 patients were included in 
this study.

All of the imaging data used in this work 
had also been used in another study. The 
other study included 114 patients with lo-
cally advanced gastric carcinoma and dealt 
with the texture analysis for prediction of 
clinical T and N stage and tumor grade be-
fore neoadjuvant treatment.

CT technique
CT was performed using two different 

scanners as follows: (i), a 64-detector CT 
scanner (Aquilion, Canon Medical Sys-
tems Corporation) and (ii), a 128-detector 
CT scanner (Ingenuity, Philips). Our con-
trast-enhanced CT acquisition parameters 
for patients with gastric cancer are as fol-
lows: (i), tube voltage, 120 kVp; (ii), tube cur-
rent, 100–500 mAs; (iii), slice thickness, 2–3 
mm; (iv), pitch, 0.797–1.5; (v), field of view, 

50×50 cm2; (vi), rotation time, 0.50–0.75 
s; (vii), matrix, 512×512; and (viii), recon-
struction interval, 0.4 mm and 0.5 mm for 
128-detector and 64-detector CT scanners, 
respectively; and (ix), delay, 60 s after aortic 
enhancement of 100 HU.

Optimal distension of the stomach was 
achieved using endoluminal contrast 
agents (500-1000 mL of water or a mix-
ture of 500-1000 mL of water and oral 
contrast immediately before the CT scan). 
Following a non-contrast scan, all patients 
received a non-ionic intravenous contrast 
medium according to their weight (Iopro-
mide, 1 mL/kg) with a power injector. 

Preprocessing of CT images
All contrast-enhanced CT images were 

reconstructed to achieve the same slice 
thickness of 2.5 mm on the CT workstation. 
Pixel spaces were rescaled and equalized 
to an in-plane resolution of 1×1 mm2. All 
CT images were normalized by the ±3σ 
technique (14). To minimize the effects of 
differences between the devices, image 
normalization and gray-level discretization 
were performed to achieve 64 discrete lev-
els (14,15).

Technical study pipeline
Our technical study pipeline included 

three key steps as follows: (i), feature ex-
traction; (ii), radiomic data handling; and 
(iii), statistical analysis. The technical study 
pipeline is presented in Fig. 1. 

Feature extraction
Texture feature extraction was performed 

with MaZda software program (version 4.6, 

Main points

•	 Machine learning-based CT texture analysis 
has a potential for predicting the tumor ag-
gressiveness in tubular gastric adenocarcino-
mas.

•	 The method was much more successful in pre-
dicting the status of lymphovascular invasion 
than that of perineural invasion.

•	 Using this method, more than four-fifths of the 
tubular gastric adenocarcinomas can be cor-
rectly classified for lymphovascular invasion 
status. 

•	 Only more than three-fifths of the tubular gas-
tric adenocarcinomas can be correctly classi-
fied in terms of perineural invasion status. 

Figure 1. Technical study pipeline. SMOTE, synthetic minority oversampling technique.



P. M. Szczypiński, Institute of Electronics, 
Technical University of Lodz) (15). Portal 
venous phase CT images were used for fea-
ture extraction. Manual segmentation was 
done using a single axial image including 
the highest diameter of the gastric tumor 
(Fig. 2). Then, the contour of the region of 
interest was shrunk approximately one ero-
sion to avoid the possible inclusion of peri-
gastric and intragastric areas.

In total, 271 texture features were extract-
ed per tumor. MaZda software program 
uses three feature calculation approaches 
(statistical, model-based, and transforma-
tion-based), creating a set of variables as 
follows: (i), 9 histogram-based features; 
(ii), 5 gradient features; (iii), 20 run-length 
matrix (RLM) features; (iv), 220 gray-level 
co-occurrence matrix (GLCM) features; (v), 5 
autoregressive model features; and (vi), 12 
Haar wavelet features (15–18). These fea-
tures are described on the website of the 
software in detail (http://www.eletel.p.lodz.
pl/programy/maZda/index.php).

Data handling
Feature values were normalized to 

achieve a common scale between 0 and 
1. Before randomized data sampling, the 
order of the data set was randomized with 
100% shuffling based on the metadata re-
lated to patient identifiers.

Dimension reduction was done with two 
consecutive approaches as follows: repro-
ducibility analysis and algorithm-based fea-
ture selection. 

For the reproducibility analysis, two ra-
diologists with 12 and 8 years of experience 

in abdominal imaging independently seg-
mented 20 randomly selected tumors. Seg-
mentations were performed on the same im-
age slice determined by the radiologist with 
12 years of experience. Both radiologists 
were blinded to the pathology results. Intra-
class correlation coefficients (ICCs) were cal-
culated for each texture feature using SPSS 
version 20.0 (IBM Corp). The ICC values were 
calculated considering the two-way model, 
single rating, and absolute agreement. Only 
the features with ICC≥0.8 indicating excel-
lent reproducibility were included in the fol-
lowing dimension reduction step.	

Usually, only a limited number of features 
carry relevant information needed for textur-
al discrimination. Many methods are avail-
able, allowing the selection of these features. 
In the present study, the features were se-
lected using the fast correlation-based filter 
algorithm (19). This filter is an entropy-based 
algorithm and identifies relevant features as 
well as redundancy among relevant features 
without pairwise correlation analysis. In this 
method, feature selection is independent of 
the ML algorithm.

Because our data had an imbalance be-
tween classes for both targets, we also used 
the synthetic minority oversampling tech-
nique (SMOTE), which creates synthetic in-
stances that are not exact replications (20). 
Hence, the method increases the represen-
tation of the minority group, while preserv-
ing the structure of the actual data. The 
SMOTE was utilized with the help of Waika-
to Environment for Knowledge Analysis 
software program (version 3.8.2; The Uni-
versity of Waikato, Hamilton, New Zealand).

The radiomic data were randomly sam-
pled to create training and unseen test data 
set splits with fixed proportions of 66% and 
33%, respectively. This procedure was auto-
matically performed 100 times. Training data 
sets were used in creating ML model devel-
opment. On the other hand, the test data 
sets, which were unseen by ML algorithms, 
were used for validation of the models.

Reference standard 
The reference standards for the classifi-

cations were the presence and absence of 
the LVI and PNI in tubular GACs. Surgical 
resection was performed according to the 
Japanese Gastric Cancer Association guide-
lines (21). All surgical specimens were eval-
uated by two dedicated pathologists with 5 
and 15 years of experience in the field. His-
topathological tumor type was evaluated 
according to 2010 WHO classification (22). 
The LVI and PNI were assessed based on the 
eighth edition of the American Joint Com-
mittee on Cancer (AJCC).

Statistical analysis
ML-based classifications were performed 

using Orange data mining software (ver-
sion 3.21). Eight ML algorithms were used 
as follows: (i), adaptive boosting; (ii), k-near-
est neighbors; (iii), Naive Bayes; (iv), artifi-
cial neural network; (v), random forest; (vi), 
stochastic gradient descent; (vii), support 
vector machine; and (viii), decision tree. 
Details about ML algorithm parameters are 
presented in Table 1. To avoid sampling bias 
and overly optimistic results, all ML models 
were created using 100 different training 
datasets and then tested on the remaining 
unseen test datasets. Predictive perfor-
mance of the ML models on unseen test 
data sets was evaluated and compared with 
average area under the curve (AUC) values 
of 100 samplings. In addition, accuracy, 
sensitivity, specificity, positive predictive 
value, and negative predictive values were 
calculated from the confusion matrices for 
further assessment. 

Results
Sixty-eight patients were eligible for our 

study. Of those, 51 patients were positive 
for LVI and 39 were positive for PNI. Patient 
demographic characteristics are shown in 
Table 2. 

Overall, 150 of 271 texture features 
showed excellent reproducibility (ICC≥0.8) 
based on the analysis of two radiologists’ 
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Figure 2. a, b. Segmentation technique. Using a single axial slice of the portal venous phase CT (a), 
tumor segmentation (b) is done manually along the whole and the largest outer margin of gastric 
adenocarcinoma. The contour of the segmentation was shrunk to avoid the possible inclusion of 
perigastric and intragastric areas.

a b
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independent segmentation data. Therefore, 
these features were included in the follow-
ing dimension reduction step.

Using the fast correlation-based filter, the 
number of features decreased to five for 
both PNI and LVI, which were used in ML 
model development. Details about these 
features are given in Table 3. For LVI and PNI, 
two features and one feature were based on 
the transformed images, respectively. For 
both targets, the other texture features were 
extracted from the original images. Domi-
nant feature class for each target was GLCM. 
The distribution of the normalized texture 
feature values with SMOTE are shown in a 
heat map in Fig. 3. Two-dimensional pro-
jections of the individual tumors based on 
selected features are given in Fig. 4.

Considering all eight ML algorithms, 
mean AUC and accuracy ranges for predict-
ing LVI were 0.777–0.894 and 76%–81.5%, 
respectively. The best performance was 
achieved by the random forest with mean 
AUC and accuracy of 0.894 and 80.9%, re-
spectively. 

With the same eight ML algorithms, mean 
AUC and accuracy ranges for predicting PNI 
were 0.482–0.754 and 54%–68.2%, respec-
tively. The best performance was achieved 
by the Naive Bayes with a mean AUC of 
0.754 and accuracy of 68.2%. 

Performance of all ML classifiers for pre-
dicting LVI and PNI status are summarized 

Figure 3. a, b. The heat map shows the distribution of normalized texture feature values selected for 
lymphovascular (a) and perineural (b) invasion status.

a

b

Table 1. Parameter settings of machine learning algorithms used in this study

Machine learning algorithms/Parameters Parameter value

k-Nearest Neighbors

   Number of neighbors 5

   Metric Euclidean

   Weight Uniform

Decision Tree

   Minimum number of instances in leaves 2

   Minimum limit for split 5

   Limit for maximum depth 100

Support Vector Machine

   Kernel Linear

   Iteration limit 100

Stochastic Gradient Descent

   Base classifier Linear SVM

   Loss function Hinge

   Regularization Lasso (L1)

Random Forest

   Number of trees 10

   Minimum limit for split 5

Neural Network

   Neurons in hidden layers 100

   Activation Logistic

   Solver Adam

   Maximum number of iterations 200

Naive Bayes

   Prior probability estimation Relative frequency

Adaptive Boosting

   Base estimator Tree

   Number of estimators 50

   Classification algorithm SAMME.R

   Regression loss function Linear

SVM, support vector machine; Lasso, least absolute shrinkage and selection operator; SAMME.R, the algorithm 
uses the probability estimates to update the model.

Table 2. Baseline characteristics of 68 study 
patients

Characteristics Value

Age (years), mean±SD 62.3±10.5

Sex, n (%)

   Female 16 (23.5)

   Male 52 (76.5)

Tumor size (cm), mean±SD 5.6±2.9

Grade, n (%)

   1 14 (20.6)

   2 41 (60.3)

   3 13 (19.1)

Perineural invasion, n (%)

   Positive 39 (57.4)

   Negative 29 (42.6)

Lymphovascular invasion, n (%)

   Positive 51 (75)

   Negative 17 (25)

SD, standard deviation.



in Table 4 and Table 5, respectively. Receiv-
er operating characteristic (ROC) curves for 
predicting both targets are shown in Fig. 5. 
Calibration plots of the ML algorithms are 
given in Fig. 6.

Discussion
In this work, we focused on the most 

common histopathologic type of GAC, that 
is tubular, and investigated the potential 
role of CT texture analysis in predicting LVI 
and PNI using an ML approach with various 
state-of-the-art algorithms. Using the best 
algorithms, more than four-fifths of the 
tubular GACs can be correctly classified in 
terms of LVI status. On the other hand, only 
more than three-fifths of the tubular GACs 
can be correctly classified in terms of PNI 
status. Overall, the method was much more 
successful in predicting the status of LVI 
than that of PNI.

The most important tumor-related prog-
nostic factor in all human cancers is the 
spread of the disease in distant organs/sites. 
Therefore, invasion and metastasis of the 
tumors at the time of diagnosis are the two 
most important factors related to the bio-
logical behaviors of malignant tumors. The 
presence of LVI and PNI is of paramount im-
portance in the management of GACs and 
related to higher risk and poor prognosis (5, 
7, 23–27). These factors are widely used to 
stratify the patients to indicate the risk of 
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Table 3. Selected texture features by the fast correlation-based filter

Feature codes Selected features ICC

LVI-F1 S(5,-5)SumOfSqs 0.810

LVI-F2 WavEnLH_s-3 0.861

LVI-F3 WavEnLH_s-1 0.815

LVI-F4 S(0,2)DifVarnc 0.815

LVI-F5 S(0,3)Correlat 0.834

PNI-F1 WavEnLH_s-1 0.815

PNI-F2 S(4,-4)Entropy 0.964

PNI-F3 S(4,4)Correlat 0.849

PNI-F4 S(0,2)DifVarnc 0.815

PNI-F5 Vertl_GLevNonU 0.963

LVI, lymphovascular invasion; PNI, perineural invasion; ICC, intraclass correlation coefficient.

Table 4. Performance of machine learning algorithms in predicting lymphovascular invasion

ML algorithms AUC
Accuracy  

(%)
Sensitivity  

(%)
Specificity  

(%)
PPV  
(%)

NPV  
(%)

Predictions
Reference 
standardNegative Positive

k-NN 0.859 78.0 73.3   
82.7

82.7   
73.3

81.0   
75.6

75.6   
81.0

468   
1447

1283   
302

P   
N

Decision Tree 0.777 76.0 68.5   
83.5

83.5   
68.5

80.6   
72.6

72.6   
80.6

552   
1460

1199   
289

P   
N

SVM 0.858 81.5 83.4   
79.5

79.5   
83.4

80.3   
82.7

82.7   
80.3

291   
1391

1460   
358

P   
N

SGD 0.815 81.5 83.3   
79.7

79.7   
83.3

80.4   
82.6

82.6   
80.4

293   
1394

1458   
355

P   
N

Random Forest 0.894 80.9 80.2   
81.6

81.6   
80.2

81.3   
80.4

80.4   
81.3

347   
1427

1404   
322

P   
N

Neural Network 0.857 79.3 79.0   
79.6

79.6   
79.0

79.5   
79.1

79.1   
79.5

368   
1392

1383   
357

P   
N

Naive Bayes 0.868 76.8 73.3   
80.3

80.3   
73.3

78.9   
75.0

75.0   
78.9

468   
1405

1283   
344

P   
N

Adaptive Boosting 0.779 77.9 77.6   
78.2

78.2   
77.6

78.1   
77.7

77.7   
78.1

392   
1368

1359   
381

P   
N

Values in the first and second rows were calculated for positive (P) and negative (N) target classes, respectively.
ML, machine learning; k-NN, k-nearest neighbors; SVM, support vector machine; SGD, stochastic gradient descent; AUC, area under the curve; PPV, positive predictive value; 
NPV, negative predictive value; N, negative; P, positive.

Figure 4. a, b. Distribution of the selected texture features in two-dimensional space considering 
the classes, that is, the presence and absence of the lymphovascular (a) and perineural (b) invasion. 
Please refer to Table 3 for actual feature names.

a b
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local, regional, or distant recurrence, which 
are currently assessed only microscopically 
based on postoperative specimens. There-

fore, predicting LVI and PNI preoperatively 
might contribute to the selection of pa-
tients requiring extensive surgical proce-

dures involving paraaortic lymphadenec-
tomy or neoadjuvant treatment planning. 
Nonetheless, these factors cannot be fully 
evaluated by conventional imaging meth-
ods preoperatively. Given that texture anal-
ysis has potential in providing preoperative 
information in various tumors, it may also 
be helpful in preoperative risk stratification 
and optimal selection of GAC patients, who 
require more extensive surgery while avoid-
ing over-treatment (28–33).

To our knowledge, there has been no pre-
vious work regarding the ML-based CT tex-
ture analysis of GACs for predicting LVI and 
PNI. Nonetheless, we found two reports in 
the texture literature about the prediction 
of LVI and or PNI status in GACs (34, 35). 
One of these was about entropy-related pa-
rameters based on whole-volume apparent 
diffusion coefficient (ADC) texture analysis 
at 3 T MRI, which is significantly correlated 
with postoperative T, N, and overall stage, 
as well as vascular invasion status (35). In 
contrast to the high-dimensionality of our 
work, the authors only calculated entro-
py-related parameters. In another work, 
the authors performed CT texture analysis 
using only the first-order texture features 
to predict histopathologic features of GAC. 
The authors suggested that the method 
had great potential for predicting the de-
gree of differentiation, Lauren classification, 
and vascular invasion status. However, they 

Table 5. Performance of machine learning algorithms in predicting perineural invasion

ML algorithms AUC
Accuracy  

(%)
Sensitivity  

(%)
Specificity  

(%)
PPV  
(%)

NPV  
(%)

Predictions
Reference 
standardNegative Positive

k-NN 0.667 62.2 55.4   
69.1

69.1   
55.4

64.4   
60.5

60.5   
64.4

606   
927

752   
415

P   
N

Decision Tree 0.599 57.2 53.0   
61.5

61.5   
53.0

58.2   
56.4

56.4   
58.2

638   
825

720   
517

P   
N

SVM 0.482 54.6 51.2   
58.1

58.1   
51.2

55.3   
54.1

54.1   
55.3

663   
780

695   
562

P   
N

SGD 0.557 55.6 52.2   
59.0

59.0   
52.2

56.3   
55.0

55.0   
56.3

649   
792

709   
550

P   
N

Random Forest 0.687 61.7 59.6   
63.9

63.9   
59.6

62.6   
61.0

61.0   
62.6

548   
857

810   
485

P   
N

Neural Network 0.570 54.0 52.9   
55.1

55.1   
52.9

54.4   
53.6

53.6   
54.4

640   
740

718   
602

P   
N

Naive Bayes 0.754 68.2 61.6   
74.9

74.9   
61.6

71.3   
65.8

65.8   
71.3

522   
1005

836   
337

P   
N

Adaptive Boosting 0.595 59.5 59.6   
59.4

59.4   
59.6

59.8   
59.2

59.2   
59.8

549   
797

809   
545

P   
N

Values in the first and second rows were calculated for positive (P) and negative (N) target classes, respectively.
ML, machine learning; k-NN, k-nearest neighbors; SVM, support vector machine; SGD, stochastic gradient descent; AUC, area under the curve; PPV, positive predictive value; 
NPV, negative predictive value; N, negative; P, positive.

Figure 6. a, b. Calibration plots show predicted and actual probability (observed average) of the machine 
learning models for predicting lymphovascular (a) and perineural (b) invasion. SVM, support vector 
machine; Adaboost, adaptive boosting; SGD, stochastic gradient descent; k-NN, k-nearest neighbors.
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reported no significant differences be-
tween gastric carcinoma with and without 
neural invasion. Major differences of our 
work from these previous two works are 
as follows: (i), the use of high-dimensional 
texture features; (ii), an ML approach; and 
(iii), rather focused analysis using the most 
common histopathologic type, which is of 
utmost significance because the GACs in-
volve very heterogeneous subtypes that 
might influence the texture parameters to 
a large extent.

This study has several limitations. First, 
the number of patients is relatively small 
and imbalanced between classes. Second, 
GACs shows significant heterogeneity at 
both architectural and cytological evalu-
ations, often appearing as mixed tumors. 
This is a major problem in interpreting 
the architectural structure and underly-
ing morphologic features of these tumors. 
Therefore, in this work, we focused on the 
most common histopathologic type of 
GACs, which is tubular GAC. Third, two-di-
mensional tumor segmentation was used 
in this study. Three-dimensional segmenta-
tion would be much more representative in 
terms of tumor characteristics, but clinical-
ly time-consuming. In the future, automat-
ic or semi-automatic segmentation tech-
niques for gastric tumor segmentation that 
is coupled with texture analysis software 
programs would be very good solutions for 
this kind of evaluations. Fourth, because 
there is no data regarding the invasion vol-
ume, it was not possible to determine or 
predict the amount of LVI and PNI, which 
might have an influence on the textural 
characteristics. Fifth, due to positive oral 
contrast, it was very hard to correctly de-
lineate some tumors in the early-stage. On 
the other hand, we performed reproduc-
ibility analysis to select the ones with ex-
cellent reproducibility. Finally, we designed 
the study for the prediction of LVI and PNI 
separately. However, it would have been 
much more intuitive to create new target 
classes such as patients with both LVI and 
PNI or without both LVI and PNI. However, 
our data size was rather small for this type 
of multi-class classification. 

In conclusion, ML-based contrast-en-
hanced CT texture analysis has a potential 
for predicting LVI with satisfactory perfor-
mance. On the other hand, the method 
achieved a rather fair performance for the 
prediction of PNI. Further studies with ex-
ternal and independent validation are ab-

solutely needed before this method is intro-
duced in the clinical work-up of this disease. 
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